服装行业数据分析的要点——服装行业指标体系1从供应链的角度来看,服装行业的数据分析主要集中在进销存三个方面,其中存销比和销率是两个重要的分析指标。谢,作为一个服装行业的从业者,我想从三个方面谈谈服装行业面临的变化和趋势。服装行业传统的营销模式已经不能满足现代消费者不断变化的需求。激烈的竞争市场环境使得服装行业逐渐多元化、精细化、运营化,利用数据管理实现智能营销。
服装行业如何做数据分析?
衣食住行,乃民生四大要素,随着经济的发展,人们对基本的生活诉求也有所提高,作为排在第一位的 衣尤其显著。传统的服装行业营销模式已不能满足现代消费者用户的多变需求,激烈竞争的市场环境使得服装行业逐步多样化发展,精细化运营,利用数据化管理实现智慧营销。服装行业面临的挑战 现今大环境下,服装行业的营销费用不断提高,企业利润日益微薄 服装属于流行周期短季节性强的商品,容易造成产销不平衡,存在高库存风险 一般情况下,服装门店和商品SKU都比较多,数据量规模庞大,导致财务业务信息不同步 服装类商品对应的属性相对复杂,且各类属性的组合分析灵活多变 消费者会给自己贴标签,也会给服装品牌贴标签,如何让商品渠道与消费者的标签匹配起来,是服饰行业亟需解决的问题。
服装行业数据分析要点图-服装行业指标体系1从供应链角度来看,服装行业的数据分析主要以购销存为主线,其中,存销比和售罄率是两个重要分析指标。图-存销比图-售罄率2发货和回款的执行情况也是需要实时监控的,这也是财务方面数据分析的重要指标。图-发货回款实时监控3针对商品和门店还需要做精细化多维度分析,追根溯源,为下一阶段的精准营销做准备。
例如,畅滞销是销售数据分析中最简单最直观,也是最重要的数据因素之一。畅销款即是在一定时间内销量较大的商品,而滞销款则相反。畅销款不是商品的固有属性,而是随业务和时间周期变化而变化的动态属性,要从变化中分析出原因。图-原因探索分析云带来的数据价值 将线上 线下 物流数据打通,以消费者为中心的会员支付库存服务等数据全面共享 海量数据实时响应,实现动态智能分析,满足消费者多变需求 实时跟踪销售情况,了解市场需求动态,及时对商品做出配货调整,从而降低库存风险 优化供应链管理流程,提升市场响应速率,实现资源最大化利用 跟踪和分析消费者购买行为,提供个性化精准运营服务,从而提升营销转化效果,提高消费者忠诚度,减少市场营销费用 通过销售预测模型,探索科学定价策略,提升商品竞争力。
服装行业怎么入行?
服装行业应该这样入行。1,准备好钱,找一个位置好的店面。考查一下这个市场,看这个市场什么服装卖得最好,是男装还是女装,这个市场的服装是针对哪个消费层次的,是针对城市的还是农村的,是品牌的还是一般的,然后有针对性的找优质货源。这时就要靠你有很好的进货眼光和高超的营销技巧。2.随着时代的发展,网店对实体店冲击的很利害,这时你要不断的学习,发展线上销售,品牌如京东,便易的如淘宝,闲鱼。
服装行业如何利用大数据?
服装行业有着流行周期短季节性强,产销链不畅,丢失市场机会生产库存难预计市场信息不畅通等特点,而利用大数据智能数据可视化分析却恰好可以弥补这些缺陷,化被动为主动。比如奥威软件的鞋服行业BI方案就主打以爬虫对接填报的方式来迅速采集各个系统零售平台零售ERP上的数据上的数据做综合性零售数据可视化分析,以成熟的零售数据分析模型推动系统化分析挖掘,并以这些数据信息为支持优化生产结构销售库存计划等,及时把握市场风向提高销售额的同时降低市场风险减少不必要的成本投入。
服装行业是不是越来越难做了?
我觉得现在服装行业不难做。这些问题主要看你选择什么样的服装。我们选择童装、女装还是男装?服装属性其实是刚需产品,和我们的鞋子一样。如果坏了或者过时了,我想再买一次。一件衣服属于体验性很强的产品,需要试穿。如果客户满意,那么就有价格问题,也就是性价比问题。客户能接受我们的价格吗?现在很多人觉得传统服装行业不好做,电商很难做。